随机过程
Correlation Function and Positive Definite Functions
Correlation Function
The correlation function \( R_X(t, s) \) for a random process \( X(t) \) is defined as:
\[
E[X(t) X(s)] = R_X(t, s)
\]
For wide-sense stationary (W.S.S.) processes, we have:
\[
R_X(t, s) = R_X(t - s)
\]
Positive Definite Function
A function \( f(x) \) is positive definite (p.d.) if the following condition holds:
\[
f(x) \text{ is p.d.} \iff \sum_{i,j=1}^n \lambda_i \lambda_j \left( f(t_i - t_j) \right) \geq 0, \quad \forall \, \lambda_1, \lambda_2, \dots, \lambda_n
\]
In matrix notation, for a matrix \( A \):
\[
A \text{ is p.d.} \iff X^T A X \geq 0 \quad \text{for all} \, X \in \mathbb{R}^n
\]
And for symmetric matrices:
\[
\frac{1}{2} X^T (A + A^T) X = X^T A X \geq 0
\]
Complex Case
For the complex case, the correlation function becomes:
\[
R_X(t, s) = E[X(t) X^*(s)]
\]
The correlation matrix is:
\[
R = E[X X^H], \quad X^H R X \neq 0
\]
Where \( X = (X(t_1), \dots, X(t_n))^T \) and \( R_{ij} = E[X(t_i) X^*(t_j)] \).
The Fourier transform \( \hat{X}(\omega) \) of a signal \( X(t) \) is defined as:
\[
\hat{X}(\omega) = \int_{-\infty}^{\infty} X(t) \exp(-j\omega t) \, dt
\]
The Power Spectrum Density \( S_X(\omega) \) is given by:
\[
S_X(\omega) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T X(t) \exp(-j\omega t) \, dt
\]
White Noise
For white noise, the power spectrum density \( S_X(\omega) \) is constant, which implies:
\[
S_X(\omega) = C \quad \text{(constant)}
\]
In this case, the correlation function at lag 0 is:
\[
R_X(0) = E[X(t)^2]
\]
Thus, for white noise:
\[
S_X(\omega) = \int_{-\infty}^{\infty} R_X(t) \exp(-j\omega t) \, dt = R_X(0)
\]
The Fourier transform of the correlation function can be expressed as:
\[
\hat{X}(\omega) = \int_{-\infty}^{\infty} X(t) \exp(-j\omega t) \, dt
\]
For the Power Spectrum Density:
\[
S_X(\omega) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T X(t) \exp(-j\omega t) \, dt
\]
And in the case of complex processes:
\[
S_X(\omega) = \int_{-\infty}^{\infty} R_X(t) \exp(-j\omega t) \, dt
\]
Positive Definite Condition
For positive definiteness, the following condition must be satisfied for all \( \lambda_1, \lambda_2, \dots, \lambda_n \):
\[
\sum_{i,j=1}^n \lambda_i \lambda_j f(t_i - t_j) \geq 0
\]
Additionally:
\[
\frac{1}{2} X^T (A + A^T) X = X^T A X \geq 0
\]
This ensures that \( A \) is positive definite.
Complex Process Analysis
For a complex process, the correlation function is given by:
\[
R_X(t, s) = E[X(t) X^*(s)]
\]
The correlation matrix is:
\[
R = E[X X^H]
\]
We also have:
\[
S_X(\omega) = \int_{-\infty}^{\infty} R_X(t) \exp(-j\omega t) \, dt
\]
Spectrum of Stochastic Process
\[
X(t)\, w.s.s.,\quad \int_{-\infty}^{\infty}|X(t)|dt<\infty?\quad X(t)\to R_X(\tau)
\]
功率谱密度
\[
S_X(\omega)=\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left|\int_{-\frac{T}{2}}^{\frac{T}{2}}\exp(-j\omega t)dt\right|^2=\int_{-\infty}^{\infty}R_X(\tau)\exp(-j\omega \tau)d\tau
\]
\[
R_X(\tau)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_X(\omega)\exp(j\omega \tau)d\omega
\]
\[
\Rightarrow 2\pi R_X(0)=\int_{-\infty}^{\infty}S_X(\omega)d\omega
\]
\(X(t)\) 是实数,\(R_X(\tau)=\mathbb E(X(t)X(t+\tau))\) is Real.
\[
\begin{aligned}
\Rightarrow S_X(\omega)&=\int_{-\infty}^{\infty}R_X(\tau)\cos(\omega\tau)d\tau+j\int_{-\infty}^{\infty}R_X(\tau)\sin(\omega\tau)d\tau\\\\
&= \int_{-\infty}^{\infty}R_X(\tau)\cos(\omega\tau)d\tau=\S_X(-\omega)
\end{aligned}
\]
考虑LTI系统\(Y(t)=\text{LTI}[X(t)]\)

\[
Y(t)=\int_{-\infty}^\infty h(t-\tau)X(\tau)d\tau\quad\textcolor{cyan}{(Time Domain)}
\]
\[
\begin{aligned}
R_Y(t,s) &= \mathbb E(Y(t)Y(s))\\\\
&= \mathbb E(\int_{-\infty}^\infty h(t-\tau)X(\tau)d\tau\int_{-\infty}^\infty h(s-\tau)X(\tau)d\tau)\\\\
&= \int_{-\infty}^\infty\int_{-\infty}^\infty\mathbb E(X(\tau)X(r))h(t-\tau)h(s-\tau)d\tau dr\\\\
&= \int_{-\infty}^\infty\int_{-\infty}^\infty R_X(\tau-r)h(t-\tau)h(s-\tau)d\tau dr\\\\
\end{aligned}
\]

\[
\int_{-\infty}^{\infty}x(t-r)y(s+r)dr=(x\ast y)(t+s)
\]
\[
\tilde{h}(x)=h(-x)\Rightarrow h(s-r)=\tilde{h}(r-s)
\]
\[
\int_{-\infty}^{\infty}R_X(\tau-r)h(t-\tau)h(r-s)d\tau dr = R_X\ast h \ast \tilde h(t-s)
\]
\[
\Rightarrow \textcolor{cyan}{S_Y(\omega)}=\int_{-\infty}^{\infty} R_X\ast h \ast \tilde h(t)\exp(-j\omega t)dt = \textcolor{cyan}{\boxed{S_X(\omega) H(\omega) H^\ast(\omega)}}
\]
而
\[
\int_{-\infty}^{\infty}\tilde h(t)\exp(-j\omega t)dt=\int_{-\infty}^{\infty}h(-t)\exp(-j\omega t)dt=H^\ast(\omega)
\]
因此
\[
\textcolor{cyan}{S_Y(\omega) = \boxed{S_X(\omega) |H(\omega)|^2}}
\]

Example
微分器\(y=\frac{d}{dt}x\)\, \(H(\omega)=j\omega\):
$$
S_Y(\omega)=S_X(\omega)\cdot\omega^2
$$
\[
X(t) w.s.s.\quad, R_X(\tau), proof: R_X(0)-R_X(\tau)\geq \frac{1}{4^n}(R_X(0)-R_X(2^n\tau))
\]
\[
\begin{aligned}
R_X(0)-R_X(\tau)&\geq \frac{1}{4}(R_X(0)-R_X(\tau))\\\\
\Leftrightarrow 3R_X(0) - 4R_X(\tau) + R_X(2\tau)&\geq 0\\\\
\end{aligned}
\]
根据正定性
\[
\forall n',\quad \forall t_1\,,t_2\,,\cdots\,,t_{n'} \quad[R_X(t_i-t_j)]_{ij}\quad\text{is p.d.}
\]
令\(n'=3\), \(t_1\,,t_2\,,t_3=0,\tau,2\tau\)
\[
\begin{bmatrix}
R_X(0) & R_X(\tau) & R_X(2\tau)\\\\
R_X(\tau) & R_X(0) & R_X(\tau)\\\\
R_X(2\tau) & R_X(\tau) & R_X(0)\\\\
\end{bmatrix}\text{is p.d.}
\]
从而
\[
\begin{bmatrix}
a& b & c
\end{bmatrix}
\begin{bmatrix}
R_X(0) & R_X(\tau) & R_X(2\tau)\\\\
R_X(\tau) & R_X(0) & R_X(\tau)\\\\
R_X(2\tau) & R_X(\tau) & R_X(0)\\\\
\end{bmatrix}\begin{bmatrix}
a\\\\
b\\\\\
c
\end{bmatrix}\geq 0
\]
从而
\[
(a^2 + b^2 + c^2)R_X(0)+(ab+ab+bc+bc)R_X(\tau)+2ac R_X(2\tau)\ge 0
\]
\[
S_X(\omega)=\int_{-\infty}^{\infty}R_X(\tau)\cos(\omega\tau)d\tau=-S_X(\omega)
\]
\[
\begin{aligned}
R_X(\tau)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_X(\omega)\exp(j\omega\tau)d\omega\\\\
&=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_X(\omega)\cos(\omega\tau)d\omega\\\\
\textcolor{pink}{3R_X(0)} \textcolor{cyan}{- 4R_X(\tau)} \textcolor{yellow}{+ R_X(2\tau)}&= \frac{1}{2\pi}\int_{-\infty}^{\infty}S_X(\omega)(\textcolor{pink}{3}\textcolor{cyan}{-4\cos(\omega\tau)}\textcolor{yellow}{+\cos(2\omega\tau)})d\omega\\\\
&=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_X(\omega)(3-4\cos(\omega\tau)+2\cos^2(\omega\tau)-1)d\omega\\\\
&=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_X(\omega)(2\cos(\omega\tau)-1)^2d\omega\ge 0\quad\square
\end{aligned}
\]
Brown Motion