Skip to content

随机过程

Note

从第三节课开始,之前的慢慢补()

Correlation Function and Positive Definite Functions

Correlation Function

The correlation function \( R_X(t, s) \) for a random process \( X(t) \) is defined as:

\[ E[X(t) X(s)] = R_X(t, s) \]

For wide-sense stationary (W.S.S.) processes, we have:

\[ R_X(t, s) = R_X(t - s) \]

Positive Definite Function

A function \( f(x) \) is positive definite (p.d.) if the following condition holds:

\[ f(x) \text{ is p.d.} \iff \sum_{i,j=1}^n \lambda_i \lambda_j \left( f(t_i - t_j) \right) \geq 0, \quad \forall \, \lambda_1, \lambda_2, \dots, \lambda_n \]

In matrix notation, for a matrix \( A \):

\[ A \text{ is p.d.} \iff X^T A X \geq 0 \quad \text{for all} \, X \in \mathbb{R}^n \]

And for symmetric matrices:

\[ \frac{1}{2} X^T (A + A^T) X = X^T A X \geq 0 \]

Complex Case

For the complex case, the correlation function becomes:

\[ R_X(t, s) = E[X(t) X^*(s)] \]

The correlation matrix is:

\[ R = E[X X^H], \quad X^H R X \neq 0 \]

Where \( X = (X(t_1), \dots, X(t_n))^T \) and \( R_{ij} = E[X(t_i) X^*(t_j)] \).

Fourier Transform and Power Spectrum

The Fourier transform \( \hat{X}(\omega) \) of a signal \( X(t) \) is defined as:

\[ \hat{X}(\omega) = \int_{-\infty}^{\infty} X(t) \exp(-j\omega t) \, dt \]

The Power Spectrum Density \( S_X(\omega) \) is given by:

\[ S_X(\omega) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T X(t) \exp(-j\omega t) \, dt \]

White Noise

For white noise, the power spectrum density \( S_X(\omega) \) is constant, which implies:

\[ S_X(\omega) = C \quad \text{(constant)} \]

In this case, the correlation function at lag 0 is:

\[ R_X(0) = E[X(t)^2] \]

Thus, for white noise:

\[ S_X(\omega) = \int_{-\infty}^{\infty} R_X(t) \exp(-j\omega t) \, dt = R_X(0) \]

Relationship with Fourier Transforms

The Fourier transform of the correlation function can be expressed as:

\[ \hat{X}(\omega) = \int_{-\infty}^{\infty} X(t) \exp(-j\omega t) \, dt \]

For the Power Spectrum Density:

\[ S_X(\omega) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T X(t) \exp(-j\omega t) \, dt \]

And in the case of complex processes:

\[ S_X(\omega) = \int_{-\infty}^{\infty} R_X(t) \exp(-j\omega t) \, dt \]

Positive Definite Condition

For positive definiteness, the following condition must be satisfied for all \( \lambda_1, \lambda_2, \dots, \lambda_n \):

\[ \sum_{i,j=1}^n \lambda_i \lambda_j f(t_i - t_j) \geq 0 \]

Additionally:

\[ \frac{1}{2} X^T (A + A^T) X = X^T A X \geq 0 \]

This ensures that \( A \) is positive definite.

Complex Process Analysis

For a complex process, the correlation function is given by:

\[ R_X(t, s) = E[X(t) X^*(s)] \]

The correlation matrix is:

\[ R = E[X X^H] \]

We also have:

\[ S_X(\omega) = \int_{-\infty}^{\infty} R_X(t) \exp(-j\omega t) \, dt \]

Spectrum of Stochastic Process

\[ X(t)\, w.s.s.,\quad \int_{-\infty}^{\infty}|X(t)|dt<\infty?\quad X(t)\to R_X(\tau) \]

功率谱密度

\[ S_X(\omega)=\lim_{T\to\infty}\frac{1}{T}\mathbb{E}\left|\int_{-\frac{T}{2}}^{\frac{T}{2}}\exp(-j\omega t)dt\right|^2=\int_{-\infty}^{\infty}R_X(\tau)\exp(-j\omega \tau)d\tau \]
\[ R_X(\tau)=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_X(\omega)\exp(j\omega \tau)d\omega \]
\[ \Rightarrow 2\pi R_X(0)=\int_{-\infty}^{\infty}S_X(\omega)d\omega \]

\(X(t)\) 是实数,\(R_X(\tau)=\mathbb E(X(t)X(t+\tau))\) is Real.

\[ \begin{aligned} \Rightarrow S_X(\omega)&=\int_{-\infty}^{\infty}R_X(\tau)\cos(\omega\tau)d\tau+j\int_{-\infty}^{\infty}R_X(\tau)\sin(\omega\tau)d\tau\\\\ &= \int_{-\infty}^{\infty}R_X(\tau)\cos(\omega\tau)d\tau=\S_X(-\omega) \end{aligned} \]

考虑LTI系统\(Y(t)=\text{LTI}[X(t)]\)

alt text

\[ Y(t)=\int_{-\infty}^\infty h(t-\tau)X(\tau)d\tau\quad\textcolor{cyan}{(Time Domain)} \]
\[ \begin{aligned} R_Y(t,s) &= \mathbb E(Y(t)Y(s))\\\\ &= \mathbb E(\int_{-\infty}^\infty h(t-\tau)X(\tau)d\tau\int_{-\infty}^\infty h(s-\tau)X(\tau)d\tau)\\\\ &= \int_{-\infty}^\infty\int_{-\infty}^\infty\mathbb E(X(\tau)X(r))h(t-\tau)h(s-\tau)d\tau dr\\\\ &= \int_{-\infty}^\infty\int_{-\infty}^\infty R_X(\tau-r)h(t-\tau)h(s-\tau)d\tau dr\\\\ \end{aligned} \]

alt text

\[ \int_{-\infty}^{\infty}x(t-r)y(s+r)dr=(x\ast y)(t+s) \]
\[ \tilde{h}(x)=h(-x)\Rightarrow h(s-r)=\tilde{h}(r-s) \]
\[ \int_{-\infty}^{\infty}R_X(\tau-r)h(t-\tau)h(r-s)d\tau dr = R_X\ast h \ast \tilde h(t-s) \]
\[ \Rightarrow \textcolor{cyan}{S_Y(\omega)}=\int_{-\infty}^{\infty} R_X\ast h \ast \tilde h(t)\exp(-j\omega t)dt = \textcolor{cyan}{\boxed{S_X(\omega) H(\omega) H^\ast(\omega)}} \]

\[ \int_{-\infty}^{\infty}\tilde h(t)\exp(-j\omega t)dt=\int_{-\infty}^{\infty}h(-t)\exp(-j\omega t)dt=H^\ast(\omega) \]

因此

\[ \textcolor{cyan}{S_Y(\omega) = \boxed{S_X(\omega) |H(\omega)|^2}} \]

alt text

Example

微分器\(y=\frac{d}{dt}x\)\, \(H(\omega)=j\omega\): $$ S_Y(\omega)=S_X(\omega)\cdot\omega^2 $$

\[ X(t) w.s.s.\quad, R_X(\tau), proof: R_X(0)-R_X(\tau)\geq \frac{1}{4^n}(R_X(0)-R_X(2^n\tau)) \]
\[ \begin{aligned} R_X(0)-R_X(\tau)&\geq \frac{1}{4}(R_X(0)-R_X(\tau))\\\\ \Leftrightarrow 3R_X(0) - 4R_X(\tau) + R_X(2\tau)&\geq 0\\\\ \end{aligned} \]

根据正定性

\[ \forall n',\quad \forall t_1\,,t_2\,,\cdots\,,t_{n'} \quad[R_X(t_i-t_j)]_{ij}\quad\text{is p.d.} \]

\(n'=3\), \(t_1\,,t_2\,,t_3=0,\tau,2\tau\)

\[ \begin{bmatrix} R_X(0) & R_X(\tau) & R_X(2\tau)\\\\ R_X(\tau) & R_X(0) & R_X(\tau)\\\\ R_X(2\tau) & R_X(\tau) & R_X(0)\\\\ \end{bmatrix}\text{is p.d.} \]

从而

\[ \begin{bmatrix} a& b & c \end{bmatrix} \begin{bmatrix} R_X(0) & R_X(\tau) & R_X(2\tau)\\\\ R_X(\tau) & R_X(0) & R_X(\tau)\\\\ R_X(2\tau) & R_X(\tau) & R_X(0)\\\\ \end{bmatrix}\begin{bmatrix} a\\\\ b\\\\\ c \end{bmatrix}\geq 0 \]

从而

\[ (a^2 + b^2 + c^2)R_X(0)+(ab+ab+bc+bc)R_X(\tau)+2ac R_X(2\tau)\ge 0 \]
\[ S_X(\omega)=\int_{-\infty}^{\infty}R_X(\tau)\cos(\omega\tau)d\tau=-S_X(\omega) \]
\[ \begin{aligned} R_X(\tau)&=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_X(\omega)\exp(j\omega\tau)d\omega\\\\ &=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_X(\omega)\cos(\omega\tau)d\omega\\\\ \textcolor{pink}{3R_X(0)} \textcolor{cyan}{- 4R_X(\tau)} \textcolor{yellow}{+ R_X(2\tau)}&= \frac{1}{2\pi}\int_{-\infty}^{\infty}S_X(\omega)(\textcolor{pink}{3}\textcolor{cyan}{-4\cos(\omega\tau)}\textcolor{yellow}{+\cos(2\omega\tau)})d\omega\\\\ &=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_X(\omega)(3-4\cos(\omega\tau)+2\cos^2(\omega\tau)-1)d\omega\\\\ &=\frac{1}{2\pi}\int_{-\infty}^{\infty}S_X(\omega)(2\cos(\omega\tau)-1)^2d\omega\ge 0\quad\square \end{aligned} \]

Brown Motion